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Abstract

The dynamic instability and nonlinear response of rectangular and skew laminated plates subjected to
periodic in-plane load are studied. Based on von Karman plate theory, the large amplitude dynamic
equations of thin laminated plates are derived by applying the approach of generalized double Fourier
series. On the assumed mode shape, the governing equations are reduced to the Mathieu equation using
Galerkin’s method. The incremental harmonic balance (IHB) method is applied to solve the nonlinear
temporal equation of motion, and the region of dynamic instability is determined in this work. Calculations
are carried out for isotropic, angle-ply and arbitrarily laminated plates under two cases of boundary
conditions. The principal region of dynamic instability associated with the effect of the stacking sequence of
lamination and the skew angle of plate are also investigated and discussed. The results obtained indicated
that the instability behavior of the system is determined by the several parameters, such as the boundary
condition, number of the layers, stacking sequence, in-plane load, aspect ratio, amplitude and the skew
angle of plate.
r 2005 Elsevier Ltd. All rights reserved.

1. Introduction

The dynamic instability of laminated plates has received considerable attention in recent years.
As is well known, when a flat plate sustains a period in-plane force, it may become laterally
see front matter r 2005 Elsevier Ltd. All rights reserved.
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unstable over certain regions of the parameter space such as the excitating frequency, the in-plane
load or the amplitude of system, etc., and this phenomenon is referred to as parametric or
dynamic instability. The dynamic instability of rectangular plates under various in-plane periodic
forces has been presented by Bolotin [1] and Evan-Iwanowski [2].
The nonlinear dynamic equations of motion resulting from von Karman’s theory have been

formulated for laminated anisotropic plates by Whitney and Leissa [3]. Kraicinovic and
Herrmann [4] solved the dynamic stability problem of an isotropic plate using an integral equation
technique. The dynamic stability of simply supported antisymmetric angle-ply rectangular plates
has been presented by Bert and Birman [5]. Reddy [6], and Chen and Yang [7], and Srinivasan and
Chellapandi [8] used the finite element model to study the free vibration and the dynamic
instability of rectangular laminated composite plates. Ostiguy and Evan-Iwanowski [9], Nguney
and Ostiguy [10,11] considered the influence of the aspect ratio and boundary conditions on the
dynamic instability and nonlinear response of rectangular plates theoretically and experimentally.
Duffield and Willems [12] presented an analytical and experimental investigation parametric
instability of a stiffened rectangular plate.
For skew plates, Sathyamoorthy and Pandalai [13,14] have studied the large amplitude flexural

vibrations of thin elastic orthotropic skew plates. Liew and Lam [15] have proposed a set of two-
dimensional orthogonal plate functions to obtain solutions for flexural vibration of skew plates.
The dynamic stability of skew stiffened laminated composite plates investigated by Merritt and
Willems [16]. Kamal and Durvasula [17] applied a double series to carry out the stability analysis
of composite skew plates based on small deflection thin plate theory. Liao and Cheng [18] used
finite element method to analyze the dynamic stability of stiffened skew plates. Reddy and
Palaninathan [19] have studied the free vibration analysis of laminated composite skew plates and
the effects of skew angle, number of layers and fiber orientation angle.
In this study, solutions to large amplitude dynamic instability of skew thin laminated plates

subjected to both static and periodic in-plane force applied along two opposite edges are
determined. Using the Galerkin’s method, the governing equations are reduced to a time-
dependent Mathieu equation. The influence of boundary conditions on the stability characteristics
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Fig. 1. Plate and load configuration.
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Fig. 2. The comparison of the principal instability regions for the rectangular isotropic clamped plates: a1 ¼ 0:01,
b1 ¼ 0:01, E1=E2 ¼ 1:0, n ¼ 0:3.
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and the dynamic instability of plates are investigated by the incremental harmonic balance (IHB)
method. The results of regions of dynamic stability for isotropic, antisymmetric angle-ply and
arbitrarily laminated rectangular and skew plate are provided.
2. Governing equations

Equations of motion for generally laminated plates based on von Karman’s plate theory are
given by Chia [20], and are shown as follows:

Nx;x þNxy;y ¼ 0, (1a)

Ny;y þNxy;x ¼ 0, (1b)

Mx;xx þ 2Mxy;xy þMy;yy þNxw;xx þNyw;yy þ 2Nxyw;xy ¼ rhwtt, (1c)

��x ¼ u�;x þ
1
2

w2
;x; ��y ¼ n�;y þ

1
2

w2
;y; ��xy ¼ u�;y þ n�;x þ w;xw;y,
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��

M

� �
¼

A� B�

�ðB�ÞT D�

" #
N

K

� �
,

fMg ¼ ðMx;My;MxyÞ
T
¼ �½B��TfNg þ ½D��fKg,

fKgT ¼ ðKx;Ky;KxyÞ ¼ �ðw;xx;w;yy; 2w;xyÞ,

½A�� ¼ ½A��1; ½B�� ¼ �½A��1½B�; and ½D�� ¼ ½D� � ½B�½A��1½B� ¼ ½D� þ ½B�½B��,

where ��x, �
�
y and �

�
xy are mid-surface strain components in rectangular Cartesian coordinates; u�, n�

and w are displacement components in mid-surface in x-, y-, z-directions, respectively; Mx, My

and Mxy are bending and twisting moments; Nx, Ny and Nxy are membrane forces; Aij, Bij

and Dij are extension stiffness, coupling stiffness and bending stiffness, respectively; Kx, Ky

and Kxy are curvatures at mid-plane; h is thickness of the plate; r is mass density per unit
volume of plate.
Equation of compatibility is

��x;yy þ �
�
y;xx � �

�
xy;xy ¼ w2

;xy � w;xxw;yy. (2)
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Fig. 4. Parameter instability of the isotropic clamped rectangular plate.
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The stress function ðfÞ is defined such that

fNgT ¼ ðNx;Ny;NxyÞ ¼ ðf;yy;f;xx;�f;xyÞ. (3)

Then, the two coupled governing equations of arbitrarily laminated thin plates based on x–y
coordinate are derived as follows:

L2f� L3wþ w;xxw;yy � w2
;xy ¼ 0, (4)

rhwtt þ L1wþ L3f� Lðf;wÞ ¼ 0, (5)

where

L1 ¼ D�11ðÞ;xxxx þ 4D�16ðÞ;xxxy þ 2ðD�12 þ 2D�66ÞðÞ;xxyy þ 4D�26ðÞ;xyyy þD�22ðÞ;yyyy,

L2 ¼ A�22ðÞ;xxxx � 2A�26ðÞ;xxxy þ ð2A�12 þ A�66ÞðÞ;xxyy � 2A�16ðÞ;xyyy þ A�11ðÞ;yyyy,

L3 ¼ B�21ðÞ;xxxx þ ð2B�26 � B�61ÞðÞ;xxxy þ ðB
�
11 þ B�22 � 2B�66ÞðÞ;xxyy

þ ð2B�16 � B�62ÞðÞ;xyyy þ B�12ðÞ;yyyy,

Lðf;wÞ ¼ f;yyw;xx þ f;xxw;yy � 2f;xyw;xy.

In skew plate analysis, it is expedient to use the oblique coordinates (x, Z) instead of the
Cartesian coordinates (x, y). The (x, Z) coordinate system is shown in Fig. 1 and the
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transformations between (x, y) and (x, Z) coordinate systems are presented as follows:

x ¼ xþ Z cos a; x ¼ x� y cot a, (6)

y ¼ Z sin a; Z ¼ y csc a, (7)

where a is the skew angle of the plate.
Using the differential Chain Rule, Eqs. (4) and (5) can be rewritten in terms of the oblique

coordinates (x, Z) as

L2f� L3wþ csc2 aðw;ZZw;xx � w2
;xZÞ ¼ 0, (8)

rhw;tt þ L1wþ L3f� Lðf;wÞ ¼ 0, (9)

where

L1 ¼ ½D
�
11 � 4D�16 cot aþ 2ðD�12 þ 2D�66Þcot

2 a� 4D�26 cot
3 aþD�22 cot

4 a�ðÞ;xxxx
þ ½2ðD�12 þ 2D�16Þcsc

2 a� 12D�26 cot a csc
2 aþ 6D�22 cot

2 a csc2 a�ðÞ;xxZZ
þ ½4D�26 csc

3 a� 4D�22 cot a csc
3 a�ðÞ;xZZZ þD�22 csc

4 aðÞ;ZZZZ
þ ½4D�16 csc a� 4 cot a csc aðD�12 þ 2D�66Þ þ 12D�26 cot

2 a csc a

� 4D�22 cot
3 a csc a�ðÞ;xxxZ,



ARTICLE IN PRESS

0.00 0.10 0.20 0.30 0.40

Excitation Parameter ϕ 

0.60

0.80

1.00

1.20

1.40

1.60

1.80

F
re

qu
en

cy
 R

at
io

 Ω

a1= 2.0, b1= 2.0

a1= 0.5, b1= 0.5
a1= 0.01, b1= 0.01

a1= 1.0, b1= 1.0

Fig. 6. Parameter instability of the isotropic clamped skew (a ¼ 601) plate.

Table 1

The effects of plate ratio ða=bÞ on dimensionless fundamental frequency for simply supported square angle-ply [451/

�451/451/�451] plates ða=h ¼ 50Þ

a=b Reddy [6] Bert and Chen [25] Present

0.2 9.816 9.507 9.549

0.4 12.280 11.82 11.892

0.6 15.689 15.04 15.164

0.8 19.759 18.89 19.078

1.0 24.343 23.24 23.528

1.2 29.321 28.06 28.489

1.4 34.742 33.37 33.970

1.6 40.653 39.17 39.993

1.8 47.067 — 46.576

2.0 53.989 52.29 53.744
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L2 ¼ ½A
�
22 þ 2A�26 cot aþ ð2A�12 þ A�66Þcot

2 aþ 2A�16 cot
3 aþ A�11 cot

4 a�ðÞ;xxxx
þ ½ð2A�12 þ A�66Þcsc

2 aþ 6A�16 cot a csc
2 aþ 6A�11 cot

2 a csc2 a�ðÞ;xxZZ
� ½2A�16 csc

3 aþ 4A�11 cot a csc
3 a�ðÞ;xZZZ þ A�11 csc

4 aðÞ;ZZZZ
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Table 2

The effects of plate ration ða=bÞ on dimensionless fundamental frequency for simply supported square angle-ply [301/

�301/301/�301] plates ða=h ¼ 50Þ

a=b Reddy [6] Present

0.2 13.233 13.053

0.4 14.700 14.380

0.6 16.908 16.467

0.8 19.667 19.098

1.0 22.850 22.158

1.2 26.389 25.578

1.4 30.229 29.326

1.6 34.330 33.387

1.8 38.677 37.759

2.0 43.283 42.441

Table 3

The dimensionless fundamental frequency for the simply supported square angle-ply laminated plate ða=h ¼ 100Þ

[451/�451] [451/�451/451/�451] [451/�451/y451/�451] (8 layers)

Reddy [6] Chen and

Yang [7]

Present Reddy [6] Chen and

Yang [7]

Present Reddy [6] Chen and

Yang [7]

Present

14.618 14.90 14.635 — 23.66 23.528 25.176 25.38 25.267

Table 4

The dimensionless fundamental frequency for the simply supported antisymmetric angle-ply laminated plate

Fiber angle 2 layers 4 layers 6 layers

Reddy and

Palaninathan

[19]

Present Reddy and

Palaninathan

[19]

Present Reddy and

Palaninathan

[19]

Present

01 18.806 18.805 18.806 18.805 18.806 18.805

151 14.646 13.538 19.431 19.276 20.193 20.160

301 14.204 14.006 22.175 22.158 23.355 23.357

451 14.638 14.635 23.258 23.528 24.828 24.827

601 14.204 14.006 22.175 22.158 23.355 23.357

751 14.646 13.538 19.431 19.276 20.193 20.160

901 18.806 18.805 18.806 18.805 18.806 18.805
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� ½2A�26 csc aþ 2ð2A�12 þ A�66Þ cot a csc aþ 6A�16 cot
2 a csc a

þ 4A�11 cot
3 a csc a�ðÞ;xxxZ,

L3 ¼ ½B
�
21 � ð2B�26 � B�61Þ cot aþ ðB

�
11 þ B�22 � 2B�66Þcot

2 a� ð2B�16 � B�62Þcot
3 a

þ B�12 cot
4 a�ðÞ;xxxx þ ½ð2B�26 � B�61Þcsc a� 2 cot a csc aðB�11 þ B�22 � 2B�66Þ
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Fig. 7. The comparison of the principal instability regions for the clamped rectangular angle-ply [451/�451/451/�451]

laminated plates: a1 ¼ 0:01, b1 ¼ 0:01, E1=E2 ¼ 40, G12=E2 ¼ G13=E2 ¼ G23=E2 ¼ 0:5, n12 ¼ 0:25.
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þ 3 cot2 a csc að2B�16 � B�62Þ � 4B�12 cot
3 a csc a�ðÞ;xxxZ þ ½ðB

�
11 þ B�22 � 2B�66Þ

�csc2 a� 3 cot a csc2 að2B�16 � B�62Þ þ 6B�12 cot
2 a csc2 a�ðÞ;xxZZ

þ ½ð2B�16 � B�62Þcsc
3 a� 4B�12 cot a csc

3 a�ðÞ;xZZZ þ B�12 csc
4 aðÞ;ZZZZ

Lðf;wÞ ¼ csc2 aðf;ZZw;xx þ f;xxw;ZZ � 2f;xZw;xZÞ.
3. Analysis

3.1. Mathieu’s equation

A laminate plate shown in Fig. 1 is simply supported at all edges (S–S–S–S) or clamped at all
edges (C–C–C–C), and subjected to the action of periodic in-plane force uniformly distributed
along two opposite edges.
The boundary conditions for all edges simply supported (S–S–S–S) can be written as

w ¼ 0; Mx ¼ 0 at x ¼ 0; a,

w ¼ 0; MZ ¼ 0 at Z ¼ 0; b. ð10Þ
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The boundary conditions for all edges clamped (C–C–C–C) can be written as follows:

w ¼ 0; w;Z ¼ 0 at Z ¼ 0; b,

w ¼ 0; w;x ¼ 0 at x ¼ 0; a. ð11Þ

A transverse deflection function w satisfying the boundary conditions, is assumed to be

w ¼
X

m

X
n

hW mncmðxÞZnðZÞ. (12)

Substituting Eq. (12) into Eqs. (10) and (11) yields, for a simply supported edge,

cmðxÞ ¼ sin
mpx

a

� �
and ZnðZÞ ¼ sin

npZ
b

� �
(13)

and, for a clamped edge,

cmðxÞ ¼ X mðxÞ and ZnðZÞ ¼ Y nðZÞ, (14)

where X i, Y j are beam eigenfunction given by

X iðxÞ ¼ Ci cosh
lix
a

� �
� cos

lix
a

� �� �
� sinh

lix
a

� �
� sin

lix
a

� �� �
, (15)
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Y jðZÞ ¼ Cj cosh
ljZ
b

� �
� cos

ljZ
b

� �� �
� sinh

ljZ
b

� �
� sin

ljZ
b

� �� �
, (16)

Ck ¼ ðsinh lk � sin lkÞ=ðcosh lk � cos lkÞ

and lk is satisfied by the characteristic equation

1� cosh lk cos lk ¼ 0. (17)

The external in-plane forces acting on the plate are uniformly distributed along two opposite
edges (x ¼ 0 and a), but the other two edges (Z ¼ 0 and b) are stress free. These in-plane boundary
conditions can be expressed as follows:

f;ZZ ¼ �ðN0 þNt cos ltÞ and f;xZ ¼ 0 at x ¼ 0; a,

f;xx ¼ 0 and f;xZ ¼ 0 at Z ¼ 0; b. ð18Þ

The stress function, f, satisfying the in-plane conditions, is also assumed to be

f ¼
X

p

X
q

hfpqX pðxÞY qðZÞ �
Z2

2
ðN0 þNt cos ltÞ, (19)

where X i, Y j are beam eignfunction as defined in Eqs. (15) and (16).
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Eqs. (12) and (19), are substituted into Eqs. (8) and (9). The first resulting equation is multiplied
by X iðxÞY jðZÞ and the second by ciðxÞZjðZÞ. Integrating both equations with respect to x from 0 to
a and Z from 0 to b, the results are

h½Gmn
ij �fmn � h½H

pq
ij �W pq þ h2

½V
pqrs
ij �W pqW rs ¼ 0, (20)

rh2
½S

pq
ij �W pq;tt þ h½P

pq
ij �W pq þ h½Qmn

ij �fmn � h2fT
mn½R

mnpq
ij �W pq

þ h2½T
pq
ij �ðN0 þNt cos ltÞW pq ¼ 0, ð21Þ

where

½Gmn
ij � ¼

Z b

0

Z a

0

L2ðX mY nÞX iY j dxdZ,

½Hmn
ij � ¼

Z b

0

Z a

0

L3ðcmZnÞX iY j dxdZ,

½Pmn
ij � ¼

Z b

0

Z a

0

L1ðcmZnÞciZj dxdZ,



ARTICLE IN PRESS

0.00 0.10 0.20 0.30 0.40

Excitation Parameter ϕ

0.80

0.90

1.00

1.10

1.20

1.30

1.40

F
re

qu
en

cy
 R

at
io

 Ω

[45°/-45°/.../45°/-45°](8 layers) 

[45°/-45°/45°/-45°]
[45°/-45°]

Fig. 11. The effect of the number of layers on the principal instability regions for the clamped skew (a ¼ 601) angle-ply

laminated plates.

G.Y. Wu, Y.S. Shih / Journal of Sound and Vibration 292 (2006) 315–340 327
½Qmn
ij � ¼

Z b

0

Z a

0

L3ðX mY nÞciZj dxdZ,

½Smn
ij � ¼

Z b

0

Z a

0

cmZnciZj dxdZ,

½Tmn
ij � ¼

Z b

0

Z a

0

csc2 ac00mZnciZi dxdZ,

½V
mnpq
ij � ¼

Z b

0

Z a

0

ðc00mzncpz00q � c0mz0nc
0
pz0qÞX iY j dxdy,

½R
mnpq
ij � ¼

Z b

0

Z a

0

ðX mY 00nc
00
pZp þ X 00mY ncpZp � 2X mY ncpZqÞciZj dxdZ.

Eq. (20) can be rewritten as

fmn ¼ ½G
mn
ij �
�1ðH

pq
ij W pq � hV

pqrs
ij W pqW rsÞ. (22)
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Substituting Eq. (22) into Eq. (21) leads to a system of ordinary differential equations as follows:

d2W ij

dt2
þ ½apq

0ij�W pq þ ½a
pq
1ij� cos ltW pq þ ½b

pqrs
ij �W qpW rs

þ ½gpqrstu
ij �W pqW rsW tu ¼ 0, ð23Þ

where

½apq
0ij� ¼ ½S

pq
ij �
�1ð½P

pq
ij � þ ½Q

mn
ij �½G

mn
ij �
�1½H

pq
ij � þN0½T

pq
ij �Þ=ðrhÞ,

½apq
1ij� ¼ Nt½S

pq
ij �
�1½T

pq
ij �=ðrhÞ,

½bpqrs
ij � ¼ ½S

pq
ij �
�1ð�½Qmn

ij �½G
mn
ij �
�1½V

pqrs
ij � � ½G

mn
ij �
�1½H

ps
ij �½R

mnrs
ij �Þ=r,

½gpqrstu
ij � ¼ h½S

pq
ij �
�1ð½Gmn

ij �
�1½V

pqrs
ij �½R

mntu
ij �Þ=r,

In this study, the only first terms of Wpq (p ¼ 1, q ¼ 1) and fmn (m ¼ 1, n ¼ 1) are considered,
the modal Eq. (23) becomes

d2W

dt2
þ ða0 þ a1 cos ltÞW þ bW 2 þ gW 3 ¼ 0. (24)
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Eq. (24) can be written as

d2W

dt2
þ o2

Lð1þ 2j cos ltÞW þ bW 2 þ gW 3 ¼ 0, (25)

where o2
L ¼ a0, 2j ¼ a1=a0.

In this study, the new parameters are defined as o ¼ l=2, O ¼ o=oL, t ¼ ot, k1 ¼ b=o2
L and

k2 ¼ g=o2
L, Eq. (25) becomes

O2 d
2W

dt2
þ ð1þ 2j cos 2tÞW þ k1W

2 þ k2W
3 ¼ 0. (26)

3.2. Incremental harmonic balance (IHB) method

The IHB method has been successfully applied to various types of nonlinear dynamic problems
and discussed in a number of papers: for example, Refs. [21–24]. The procedure of the IHB
method for seeking periodic solutions is generally divided into two steps. In the first step, small
increments are added to the current solution of equation. The current state of vibration
corresponding to a point ðO0; j0Þ on instability boundary is denoted by W 0. A neighboring state
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is reached through a parameter incrementation:

j ¼ j0 þ Dj; O ¼ O0 þ DO; W ¼W 0 þ DW . (27)

Substituting the expansions (27) into Eq. (26) and neglecting the nonlinear terms of Dj, DO,
DW , a linearized incremental equation is obtained

O2
0D €W þ ð1þ 2j cos 2tÞDW þ 2k1W 0DW þ 3k2W

2
0DW

¼ Rþ 2DjW 0 cos 2t� 2DOO0
€W 0, ð28aÞ

R ¼ �½O2
0
€W 0 þ ð1þ 2j0 cos 2tÞW 0 þ k1W

2
0 þ k2W

3
0�. (28b)

As mentioned in Refs. [21,22], although Eq. (28a) is linear, it has variable coefficients, and thus
is difficult to solve. Hence, an approximate solution will be obtained by assuming a periodic
solution and using the Galerkin’s method, which is the second step. The approximate functions
W 0 and DW can be expanded as a truncated Fourier series

W 0ðtÞ ¼
X2N�1

k¼1;3;...

ðak sin ktþ bk cos ktÞ, (29)
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DW ðtÞ ¼
X2N�1

k¼1;3;...

ðDak sin ktþ Dbk cos ktÞ (30)

for solution with period 2p in terms of t. N is the number of temporal terms for calculation. The
coefficients ak and bk are defined as the dimensionless amplitude of the system [22]. By considering
Eq. (29), one may note that the vibration of the system is represented in an equivalent manner by
the values of the coefficients. The choice of the coefficients ak and bk will be discussed later in this
section. Substituting Eqs. (29) and (30) into Eq. (28a), and applying Galerkin procedure, a set of
linear equations can be obtained as follows:

½C�fDag ¼ fRg þ DcfPg þ DOfQg, (31)

where [C] is the matrix for the Fourier coefficients and fDag is a vector consisting of Fourier
coefficients Dak or Dbk, for example: fDagT ¼ fDa1;Da3;Da5; . . .g. The vectors fRg, fPg and fQg
can be calculated corresponding to Eq. (28b), the second and third right-hand side terms of
Eq. (31). The IHB method needs only to treat a series of linear algebraic equations. Because only
the relative value as of the coefficients in Eqs. (29) and (30) are required, one of them is possible
to prescribe as a unity reference constant with its corresponding increment in fDag set to zero,
for example, a1 ¼ 1:0 and Da1 ¼ 0. Hence, the summation is on k ¼ 1; 3; 5; . . . ; 2N � 1 for
the principal region of instability, corresponding to a solution of period 2p.
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From Eq. (31), a linear system of 2N equations with 2N þ 2 unknowns Da, Dj and DO has to
be solved at each incremental step. Hence, it is necessary to add two constraints among Da, Dj
and DO. The first constraint is Da1 ¼ 0 and the second constraint either Dj ¼ 0 or DO ¼ 0. If
Dj ¼ 0, then j is said to be an active increment [21,22], i.e., the boundary curve is obtained by
incrementing j. This is so-called j-incrementation. Similarly, if DO ¼ 0, then O is an active
increment (O-incrementation). Therefore, only 2N equations are needed for solving the problem.
These two constraints have been discussed in detail in Refs. [21,22]. When Dj ¼ 0 has been used
as the second constraint, then Eq. (31) can be written as

CT
12Da ¼ R1 þ DOQ1,

½C3�Da ¼ Rþ DOQ, ð32Þ

where

½C� ¼

C1
..
.

CT
12

� � � � � � � � �

C21
..
.
½C3�

8>>><
>>>:

9>>>=
>>>;
; Da ¼

0

Da

� �
; R ¼

R1

R

� �
; Q ¼

Q1

Q

" #
,
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T denotes a transpose. Solving Eq. (32), DO is obtained

DO ¼
CT

12½C3�
�1R� R1

P1 � CT
12½C3�

�1Q
. (33)

Then, Da is calculated as

Da ¼ ½C3�
�1fRþ DOQg. (34)

Substituting the solution into Eq. (28b), R is the corrective term, and becomes zero when the
solution is reached.
4. Results and discussions

In this study, the general solutions of an arbitrarily laminated thin skew (a ¼ 601) and
rectangular (a ¼ 901) plate with all four edges simply supported (S–S–S–S) and four edges
clamped (C–C–C–C) have been developed. Solutions of isotropic, angle-ply and arbitrary
laminated plates are considered. The dynamic instability regions and frequency ratios are
determined and compared with other results which are available in the literature.
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4.1. Isotropic plates

The material constants for an isotropic material are applied as E1=E2 ¼ 1:0,
G12=E2 ¼ 1=2ð1þ nÞ, n ¼ 0:3, r ¼ 1190kgm�3, a=b ¼ 1:0, a=h ¼ 250, N0 ¼ 0:004Nm�1 and
Nt ¼ �0:04Nm�1. The parametric instability region associated with an isotropic clamped plate
as a1 ¼ 0:01 and b1 ¼ 0:01 has been calculated and shown in Fig. 2 wherein the comparison with
the region obtained by Srinivasan and Chellapandi [8] using the finite element method is made.
These results are found to be in good agreement. The principal dynamic instability regions for
simply supported and clamped rectangular (a ¼ 901) plates are shown in Figs. 3 and 4. While
a ¼ 601, the principal dynamic instability regions for simply supported and clamped skew plates
are shown in Figs. 5 and 6. In Figs. 3–6, the amplitude affects the regions of dynamic instability
because of large amplitude plate theory.

4.2. Angle-ply laminated plates

The material constants for laminate material (typical of graphite epoxy) are considered as
E1=E2 ¼ 40, G12=E2 ¼ 0:6, G13=E2 ¼ G23=E2 ¼ 0:5, n12 ¼ 0:25, r ¼ 1578kgm�3, a=b ¼ 1:0,
a=h ¼ 100, N0 ¼ 3:24Nm�1 and Nt ¼ �0:9Nm�1. All the laminates are assumed to be of the
same thickness and material properties.
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The accuracy in determining the regions of parametric instability depends on the natural
frequency and the critical buckling load of the plate. The dimensionless natural frequency is

Ō ¼ oL
a2

h

ffiffiffiffiffiffi
r

E2

r
, (35)

where oL can be obtained from Eq. (25).
The dimensionless fundamental frequencies of simply supported square angle-ply laminated

plates have been determined. The fundamental frequency of the plate with aspect ratios and
length-to-thickness ratio obtained in this investigation have been compared in Tables 1 and 2 with
the results by Reddy [6], Bert and Chen [25]. Table 3 shows a comparison of dimensionless
frequencies, for various layers laminate square plate obtained by various investigators. In Table 4,
the dimensionless frequencies of simply supported antisymmetric angle-ply laminates are
presented. In the studies of Reddy [6], Bert and Chen [25], Chen and Yang [7], Reddy and
Palaninathan [19], the shear deformation and rotary inertia effects have been considered. In this
study, a=h ¼ 50 and 100 for thin plates are used and the shear deformation and rotary inertia
effects are neglected. In Tables 1–4, the dimensionless natural frequencies obtained in present
work approach the results of the other research. Therefore, the governing equations of thin plate
and the analytical method considered in this study are reasonable.
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In this paper, the rectangular and skew laminated plates have been calculated for [451/�451],
[451/�451/451/�451] and [451/�451/y/451/�451] (8 layers) with different boundary conditions.
The parametric instability region associated with a four-layer angle-ply clamped laminated plate
as a1 ¼ 0:01 and b1 ¼ 0:01 has been calculated and shown in Fig. 7, wherein it is compared with
the region obtained by Ref. [8]. These two regions of dynamic instability are closed. In Figs. 8
and 9, the principal instability regions for the antisymmetric two-layer ([451/�451]) rectangular
and skew plates are shown.
The effect of the number of layers and the principal regions of dynamic instability as a1 ¼ 1:0

and b1 ¼ 1:0 for the simply supported and clamped rectangular (a ¼ 901) angle-ply laminated
plates are shown in Figs. 8 and 9. While a ¼ 601, the principal regions of dynamic instability for
the simply supported and clamped skew angle-ply laminated plates are shown in Figs. 10 and 11.
In Figs. 8–11, the effect of stacking sequence on the regions of dynamic instability for the same
plate thickness is obvious.
Using the j-incrementation procedure, the nonlinear effects of amplitude on the principal

instability region for the simply supported and clamped rectangular angle-ply [451/�451/�451/
�451] laminated plates are shown in Figs. 12 and 13, respectively. While j ¼ 0:4, the effects of
varying the number of layers on the principal region of instability associated with the different
boundary conditions for the skew angle of plate (a ¼ 601) are shown in Figs. 14 and 15. As it can
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be seen, an increase in amplitude a1 or b1 has the beneficial effect of increasing the relative value of
frequency ratio O. The beneficial effect is more pronounced for a clamped condition than for a
simply supported condition. In addition, it is easy to observe that an increase in the number of
layers decreases the frequency ratio O.
The effects of aspect ratio ða=bÞ on the principal instability region associated with the different

boundary conditions and the skew angle of the plate are illustrated in Figs. 16–19. In these figures,
the increase in the aspect ratio of plate increases the dimensionless fundamental frequency but
decreases the frequency ratio O. The results also indicate that, when the skew angle of the plate is
taken into account, the frequency ratio O corresponding to the specified aspect ratio is lower than
the rectangular plate. Further, the effect of decreasing the relative value of frequency ratio O for
the clamped condition is more obvious than the simply supported condition.
4.3. Arbitrarily laminated plates

The material constants for laminate material (typical of graphite epoxy) shown in Section 4.2
and a1 ¼ 1:0 and b1 ¼ 1:0 are considered. Figs. 20 and 21 show the principal regions of dynamic
instability and the effect of the number of layers for the simply supported and clamped
rectangular (a ¼ 901) arbitrarily laminated plates consisting of two, four and eight layers oriented
0.00 0.10 0.20 0.30 0.40

Excitation Parameter ϕ 

0.80

0.90

1.00

1.10

1.20

1.30

1.40

1.50

F
re

qu
en

cy
 R

at
io

 Ω

[45°/-30°/.../45°/-30°](8 layers) 

[45°/-30°/45°/-30°]

[45°/-30°]

Fig. 21. The effect of the number of layers on the principal instability regions for the clamped rectangular arbitrarily

laminated plates.



ARTICLE IN PRESS

0.00 0.10 0.20 0.30 0.40

Excitation Parameter ϕ 

0.80

0.90

1.00

1.10

1.20

1.30

F
re

qu
en

cy
 R

at
io

 Ω

[45°/-30°/.../45°/-30°](8 layers) 

[45°/-30°/45°/-30°]

[45°/-30°]

Fig. 22. The effect of the number of layers on the principal instability regions for the simply supported skew (a ¼ 601)

arbitrarily laminated plates.

G.Y. Wu, Y.S. Shih / Journal of Sound and Vibration 292 (2006) 315–340338
at 451/�301, 451/�301/451/�301, 451/�301/y/451/�301 (8 layers). In Figs. 22 and 23, results for
the skew (a ¼ 601) arbitrarily laminate plates are shown.
At the same values of the load factor j, the difference between the upper and lower bounds of

the primary instability region can be used as an instability measures to study the influence of the
other parameters. A similar phenomenon is also observed in Section 4.2, the increase in the
number of layers increases the natural frequency, but reduces the parameter O value. As can be
seen, the all four edges clamped plate has a significant increase in the stability and nonlinear
natural frequency. It seems to be reasonable that the more rigid boundary condition has greater
stability.
5. Conclusions

Based on von Karman’s equations and incremental harmonic balance method, the
region of dynamic instability is determined for isotropic, angle-ply and arbitrarily laminated
plates. The rectangular and skew plates with simply supported and clamped boundary
conditions are considered in this study. The influence of amplitude on the region of dynamic
instability is significant. The effects of materials, lamination orientations are considerable.
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The effects of the boundary condition, stacking sequence of lamination, in-plane load, aspect
ratio, amplitude and skew angle are noted. The results from this study can be summarized as
follows:
(1)
 The stability behavior of the system is determined by the several parameters, such as
amplitude (a1 and b1), load factor j, frequency ratio O, aspect ratio ða=bÞ, the boundary
condition, number of the layers, stacking sequence and the skew angle of plate.
(2)
 When the increase in the number of layers increases the natural frequency, but reduces the
frequency ratio O, the structure is more stable.
(3)
 For the same values of the parameters, the increase in the value of a1 or b1 increases the
nonlinear frequency of the system and the frequency ratio O.
(4)
 The increase in the load factor j increases the instability region.

(5)
 When the skew angle of the plate is taken into account, the frequency ratio O corresponding to

the specified aspect ratio is lower than the rectangular plate.

(6)
 The increase in the aspect ratio of plate increases the dimensionless fundamental frequency but

decreases the frequency ratio O.

(7)
 The more rigid boundary condition has greater stability.
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